
w
w

w
.i
n

l.
g

o
v

RELAP5-3D Improvements
2014

Dr. George Mesina

RELAP5 International Users Seminar

Idaho Falls, ID

September 11-12, 2014

INL/CON-14-32915

Outline

• Recent Issues and Solutions

• New Code Capability

• Announcements and Documents

Issues going from 4.1.3 to Version 4.2.1

• Verification issues and developments are covered in another
presentation

• Issues

– Order of evaluation in if-tests, Part 2

– Allocation/Deallocation Issues

• Memory Leaks

• Initialization and nullification

Order of Evaluation of IF-tests

• The order of evaluation is left to right in the C language and numerous
other programming languages

• ANSI FORTRAN does not enforce this in any standard

– Historically, it has been left to right on most computer platforms

– With multi-core processors, it is seldom the case anymore

• This affects many kinds of statements. Examples (.OP. means logical
operator:

1. IF (G(i) expression) .OP. (F(i) expression)) THEN

2. IF ((protection clause) .AND. (protected clause)) THEN

3. IF ((protection clause) .OR. (protected clause)) GO TO LINE

• Cases 1 and 2 covered on 2013 presentation

Order of Evaluation: OR-clause

• In left-to-right evaluation, optimized evaluation stops whenever the first
clause (the protector) is true. The second is never evaluated

• The impact of evaluating the right-hand (protected) clause before the
left-hand clause varies from negligible to core-dump

• Examples

1.IF (j <= 0 .OR. a(j) == 1.0) go to 100

2.IF (value < 0.0 .OR. sqrt(value) > 1.0) GO TO 10

• First example: array accessed out of bounds: negative

– Assumes a prior statement tested out-of-bounds positive indices

– When compiled with debug on, the code will stop executing

– Possible stoppage by O/S

• Second example: core dump

Order of Evaluation: Resolution Method

• 43216 if-tests to examine. Manual checking risks missing some

• Locator program was written to find statements that have:

• IF or ELSEIF with an OR-operator

• Variable in parenthesis that is isolated in a preceding clause

• Reduced to 1505 if-tests to check

• 5 statements found and corrected manually

• Resolution Method: break the if-test

 IF ((protection clause) .OR. (protected clause)) GO TO 10

• Becomes

 If (protection clause) GO TO 10

 If (protected clause) GO TO 10

Allocating and Deallocating Memory

• Errors addressed

– Failure to initialize and nullify

• E.G. UP 14023, Hydro Matrix destroyed when insulator
(material 9) table was extended on restart

• Cause: Subroutine QFMOVE allocated numerous arrays
without initializing any of them

– Memory leaks

• E.G. UP 14001, RELAP5-3D/PHISICS coupled code lost
memory access when running on the INL cluster

• Cause: Subroutine RRKINO allocation not properly protected

– Hanging of the machine (in a non-parallel process!)

• This has only occurred in restarts with multiple input cases

Allocating and Deallocating Memory

• Failure to initialize arrays when allocated means that the array holds
whatever value was left in memory

– Floating point calculations can change

– Indexing arrays can cause out of bounds memory access that fetch
wrong values or destroy data

– Such errors can occur randomly and can be difficult to track down

• Failure to nullify (or point) pointers when created can cause code
failure

Initializing Allocated Memory

• RELAP5-3D developer rules

– Memory should be initialized whenever it is allocated

– Pointers should be nullified or given a target upon creation

• Can be done via a loop or allocate statement

• New RELAP5-3D allocation module subprograms do this for basic data
type arrays

– Uses Fortran 2003 “source” keyword on the allocate statement to
zero out the array

• For derived types it requires a derived type scalar zero

– A project is underway to create derived type zero “scalars”

• Created under type declaration using “structure” of derived
type declaration (for ease of future development)

Initializing Allocated Memory

• Module allocation subroutines use the zero scalar on the “source”
keyword of the allocate statement

– E.G. module VOLMOD

– VOLDATZERO has over 400 components (including if-defs)

– In subrotuine vlmAllo

• ALLOCATE (vlm(nvlm), SOURCE=voldatzero, STAT=istat)

• Similarly, pointers should be nullified or initialized upon creation

– Scalar pointers should be immediately nullified

– Many derived type arrays have array components declared as
pointers

• These can be initialized when allocated as above

Deallocating Memory

• Memory leaks occur when a computer program incorrectly manages
memory allocation

• In RELAP5-3D, these occur when memory is repeatedly created and
destroyed incorrectly

– The incorrectly handled memory cannot be used for future
allocation during the code run

– The code may quit for lack of available memory

• Some sources:

– Allocate/deallocate in the transient

• Should not be done except for reflood where it is required

• Besides memory leaks, it slows the code down

– Multiple-case input decks can build-up memory leaks

– When attached to massively parallel program, such as RAVEN

Deallocating Memory

• Some ways to create memory leaks

– Eliminate a pointer without first deallocating it

– Deallocate a derived type without first deallocating its pointer
components

• Large amounts can be lost if pointer is itself a derived type
array

• When run with PHISICS on the massively parallel INL cluster, many
memory leaks occur

– Two that affected results traced to input programs RRKINO and
RADHT and fixed

• Another leak affected general tables for a NuScale model

– Traced to RGNTBL and fixed

• Many more remain to be corrected

Deallocating Memory

• It is an error to allocate an array that is already allocated and to
deallocated one that is not allocated.

• Always check the allocation status before allocating/deallocating

IF (.NOT.ALLOCATED(a)) THEN

ALLOCATE(a(na), SOURCE=0.0, STAT=istat)

IF (istat == 0) then

– ALLOCATE(a(1)%b(nb), SOURCE=0.0, STAT=istat)

…

New Code Capability

• Nodal Kinetics Upgrades (Barber)

• Coupling with RAVEN and PHISICS (Rabiti)

• Added verification capability (Mesina)

– Multi-case input decks

– PC verification

– Input modification

• Moving Systems

Announcements

• 2 Dedicated RELAP5-3D Journal Issue

– 31 Abstracts received

– Targets are:

• ANS Nuclear Technology (NT)

• ANS Nuclear Science and Engineering (NSE)

– There is also interest from ASME

– Papers due October 15, 2014

– Will be published in 2015

• RELAP5-3D News

– http://www.inl.gov/relap5/news

– LinkedIn RELAP5-3D Group

– https://www.linkedin.com/groups/RELAP5-3D-Users-Group-
4483821

Announcements

• RELAP5-3D “official” compiler is Intel Fortran 13.1

• INL IT supports Windows 7 and SUSE Linux platforms

– Windows XP is no longer supported

– Windows 8 is still not supported

– No other Linux is supported (in particular: Cygwin and Redhat)

• INL RELAP5-3D Team supports installation on

– Windows 7 with Visual Studio 2012

– Linux via Linux C-shell scripts and Makefiles

• It is possible to install RELAP5-3D on Macintosh systems, but INL
department does not support this

New Documents for RELAP5-3D and Auxiliaries

• PROGRAMMING

– G. L. Mesina, “Guidelines for developing RELAP5-3D coding,
INL/EXT-13-29228, Rev 2, June 2014

• INSTALLING

– J. H. Forsmann, G. L. Mesina, “RELAP5-3D Windows 7 Build,”
INL/MIS-12-27541 Rev. 1, October 2012

– J. H. Forsmann, “RGUI Configuration Guide ,” GDE 648, INL/MIS-
13-30082, July 2014

• RUNNING

– J. H. Forsmann, J. E. Fisher, G. L. Mesina, “PYGMALION User’s
Manual,” GDE-621, INL/MIS-13-28216, INL/MIS-13-30083, March
2013

– J. H. Forsmann, “RGUI Help Manual: RELAP5-3D Graphical User
Interface,” GDE 649, INL/MIS-13-30083, July 2014

SUMMARY

• Recent code issues presented here with solutions

– Order of operations, part 2

– Allocation and deallocation

• Progress has been made on initializing and nullifying

• New capability has been added in the code

• A journal issue dedicated to RELAP5-3D will be published next year

• Updated information is available on RELAP5-3D usage

• Keep in touch with RELAP5-3D on the web site and social media

